Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis.

نویسندگان

  • Ji-Yul Jung
  • Ryoung Shin
  • Daniel P Schachtman
چکیده

Potassium deprivation leads to large reductions in plant growth and yields. How plants sense and transduce the stress signals initiated by potassium deprivation is poorly understood. Both ethylene production and the transcription of genes involved in ethylene biosynthesis increase when plants are deprived of potassium. To elucidate the role of ethylene in low potassium signaling pathways, we used both genetic and chemical approaches. Our results showed that ethylene is important in tolerance to low potassium and for changes in both root hair and primary root growth in Arabidopsis thaliana. We show that ethylene acts upstream of reactive oxygen species in response to potassium deprivation. The expression of High-Affinity K(+) Transporter5 was used as a marker of potassium deprivation and was found to be dependent on ethylene signaling. In the ethylene insensitive2-1 (ein2-1) mutant, the ethylene-mediated low potassium responses were not completely eliminated, suggesting that some potassium deprivation-induced responses are either ethylene independent or EIN2 independent. Ethylene signaling is a component of the plant's response to low potassium that stimulates the production of reactive oxygen species and is important for changes in root morphology and whole plant tolerance to low potassium conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen peroxide mediates plant root cell response to nutrient deprivation.

Potassium (K(+)) is an essential nutrient required by plants in large quantities, but changes in soil concentrations may limit K(+) acquisition by roots. It is not known how plant root cells sense or signal the changes that occur after the onset of K(+) deficiency. Changes in the kinetics of Rb(+) uptake in Arabidopsis roots occur within 6 h after K(+) deprivation. Reactive oxygen species (ROS)...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

The Role of Ethylene in Plant Responses to K+ Deficiency

Potassium is an essential macronutrient that is involved in regulating turgor, in driving plant growth, and in modulating enzyme activation. The changes in root morphology, root function, as well as cellular and molecular responses to low potassium conditions have been studied in the model plant Arabidopsis and in other plant species. In Arabidopsis ethylene plays a key role in roots in the tra...

متن کامل

بررسی تاثیر تغییر عملکرد ژن های مختلف بر واکنش گیاهان به اتیلن (C2H4) در شرایط in vitro در آرابیدوپسیس تالیانا

gte mso 9]> Normal 0 false false false MicrosoftInternetExplorer4 gte mso 9]> Normal 0 false false false MicrosoftInternetExplorer4 gte mso 9]> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal" mso-t...

متن کامل

Use of Arabidopsis thaliana and Pseudomonas syringae in the Study of Plant Disease Resistance and Tolerance.

The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2009